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On the cost of misperceived travel time variability

Yu Xiaoa,∗, Daisuke Fukudaa

aDepartment of Civil Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, 152-8552 Tokyo, Japan

Abstract

The existence of an individual’s misperception of a travel time distribution implies that using the implied

reduced form of the scheduling model might fall short of capturing all costs of travel time variability. We

reformulate a general scheduling model employing rank-dependent utility theory and derive two special cases

as econometric specifications to study these uncaptured costs. It is found that reduced-form expected cost

functions still have a mean-variance form when misperception is considered, but the value of travel time

variability is higher. We estimate these two models with stated-preference data and calculate the empirical

cost of misperception. We find that (i) travelers are mostly pessimistic and thus tend to choose departure

times too early to achieve a minimum cost, (ii) scheduling preferences elicited using a stated-choice method

can be relatively biased if probability weighting is not considered, and (iii) the extra cost of misperceiving

the travel time distribution might be nontrivial when time is valued differently over the time of day and is

substantial for some people.

Keywords: travel time variability, schedule delay, departure time choice, rank-dependent utility

1. Introduction1

The concept of the value of travel time has been well established in the long history of economics (Becker,2

1965; DeSerpa, 1971). The value accounts for a significant share of the social benefit of infrastructure3

investments and the social cost of traffic congestion. However, travelers are confronting increasingly uncertain4

travel times because pervasive congestion makes the trip duration more sensitive to non-recurrent variations5

(e.g., unexpected incidents). This uncertainty leads to additional scheduling costs and psychological anxiety6

for users, making travel time variability (unreliability) as costly as mean travel time. Thus, policy makers7

have been gradually shifting their focus to how travel time variability should be valued and how to provide8

a reliable level of service in road networks.9

A behaviorally consistent and pragmatic approach for analyzing the value of travel time variability10

(VTTV) is a central question. In a substantial body of research, the mean-variance model (Brownstone11

and Small, 2005; Small et al., 2005) and the scheduling model (Small, 1982; Noland and Small, 1995) are12

two mainstream methods. The former is the only viable option for cost–benefit analysis relevant to travel13

time reliability because its results are directly associated with statistical measures of variability (e.g., the14

standard deviation and inter-quantile range). However, it is a black box model, where the microeconomic15

foundation of how travel time variability incurs a scheduling cost is hidden. In contrast, the scheduling16

model is micro-founded, whereby the stochastic travel time unavoidably makes a traveler arrive early or late17

relative to his/her preferred arrival time and thus causes disutility. Nonetheless, its formulation stands on18
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the individual’s perspective, making it unsuitable for appraisal purposes. A desirable solution combining the19

advantages of both approaches is to first estimate an individual’s scheduling preferences and to then convert20

them to the VTTV.21

This solution requires the mean-variance model to be a reduced form of the scheduling model. Noland22

and Small (1995) and Bates et al. (2001) show that this condition holds when assuming (i) the travel23

time is exponentially or uniformly distributed, (ii) there is no change in recurrent delay, (iii) there is no24

discrete late-arrival penalty, and (iv) travelers maximize expected utility. Fosgerau and Karlström (2010)25

further generalizes this result to any distribution, so long as its standardized distribution is independent26

of the departure time. Studies (Fosgerau and Engelson, 2011; Engelson and Fosgerau, 2011) adopt other27

assumptions on scheduling preferences and obtain reduced forms corresponding to variability measures that28

have better mathematical properties in practice. However, important discrepancies between the reduced-29

form scheduling model and its ad-hoc counterpart are found in some empirical studies (Börjesson et al.,30

2012), indicating that the former does not capture all disutility of the travel time variability.31

We conjecture that the use of expected utility theory (EUT) contributes these discrepancies. In particular,32

the independence axiom in EUT is likely to fail when being applied to trip-timing decisions, as was the case33

in experiments of Allais (1953). For example, people may underweight the occurrence probability of an34

extremely long travel time if they believe it results from an accident and is less likely to be of concern on35

a daily basis. Thus, we argue that it is necessary to verify whether using EUT in a scheduling context is36

viable before taking advantage of its mathematical convenience. Otherwise, two types of errors are likely to37

occur.38

The first type of error is misspecification. The estimation of the scheduling model relies mainly on39

data from stated-preference experiments, where risk is generally taken as one of the design attributes (e.g.,40

occurrence frequency of a given travel time). If respondents do not act consistently with EUT, letting the41

expected value enter as a proxy for certainty equivalent is likely a misspecification (De Palma et al., 2008)42

and might bias the model estimates. The second type of error is undervaluation. Deriving a reduced-form43

model under EUT would ignore the cost of probability misperception; i.e., the additional cost relating to a44

traveler’s subjectively optimized departure time cannot perfectly minimize the objective travel cost. Bates45

et al. (2001) mention the cost of misperception (see Figure 1) but give no analytical result. Essentially,46

the cost of misperception depends on how much the perceived travel time distribution deviates from the47

objective distribution and the convexity of the scheduling disutility function. We refer to these two errors48

as type i and type ii errors, respectively. A mixed effect of these errors may exist in many relevant empirical49

studies conducted to date.50

One generalization of EUT for accommodating the above behavioral anomalies and capturing the cost of51

probability misperception is using rank dependence1; i.e., an individual processes the objective probability52

to decision weight non-linearly according to his/her preference for the given outcome2. Koster and Verhoef53

(2012) formulate a rank-dependent scheduling model and show that the cost of probability weighting accounts54

for 0%–24% of the total travel cost, using a series of values of weighting parameters. Hensher and Li55

(2012) estimate a rank-dependent model but implicitly assume that the marginal cost of time equals that56

of a scheduling delay. Wang et al. (2012) estimate weighting parameters in a scheduling context, but do57

not analyze the cost of probability weighting. There are studies that attempt to capture the travel time58

1Other sources of misperception are possible but are expected to be minor under well-organized experimental conditions.
2From a normative point of view, this approach is preferable than cumulative prospect theory because an individual’s

reference point is hardly measurable and is subject to change.
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perception error and its effect on travel behavior. Carrion and Levinson (2012a) and Xu et al. (2013) propose59

Ts = To + ε|To, where subjective travel time Ts is the sum of objective time To and a conditional perception60

error ε|To. Carrion and Levinson (2012a) measure ε|To by comparing Global Positioning System trajectories61

and reported travel times. However, whether the reported travel time is a good proxy for the subjective62

travel time, which travelers use for scheduling, remains doubtful because it is subject to unpredictable63

accidents and perhaps a reporter’s strategic behavior. Peer et al. (2013) provide further evidence on the64

lack of connection between the reported travel time and travel time perception. Thus, we seek to provide an65

alternative explanation for perception error.66
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Figure 1: Additional cost due to misperception of variability (Bates et al., 2001)

To summarize, the objectives of this paper are (i) to see if a pragmatic reduced-form cost function (i.e.,67

one linear to the mean travel time and its variability measure) still exists when probability misperception is68

considered, (ii) to empirically estimate a rank-dependent scheduling model and measure the aforementioned69

two types of errors, and (iii) to examine whether the cost of misperception is sizable enough to be considered70

in a cost–benefit analysis and its contribution to the discrepancy as found in Börjesson et al. (2012).71

The remainder of this paper is organized as follows. In section 2, we first define the misperception from72

a behavioral economics point of view. We then reformulate a general scheduling model (Vickrey, 1973) with73

rank-dependent utility (Quiggin, 1982), analyze its properties, and derive reduced forms in two special cases.74

Section 3 presents details of the stated-preference (SP) experimental design and data description. Section75

4 specifies the empirical model for estimating our data and the measurement of the two types of errors.76

Section 5 discusses the model estimation result and its implications and section 6 concludes the paper.77
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2. Theoretical framework78

2.1. Definition of misperception79

Denote the set of all possible travel times by S = {s1, ..., sn}, and let its power set 2S be the set of80

events (where an event corresponds to a subset of all possible travel times). There then exists a non-additive81

probability measure v (Schmeidler, 1989) on 2S , such that v(∅) = 0 and v(S) = 1, and the preferences can82

be reflected by a utility function u and a probability measure v independently (e.g.,
∫
u · dv while dv and83

u are independent). v is interpreted as subjective probability; i.e., the number a person uses to calculate84

the expectation of a random variable. On the other hand, we have an objective probability measure ρ. It85

is not correct to take v(e) = ρ(e) for all e ∈ 2S for granted. Thus, the general definition of misperception86

is essentially the discrepancy between v(e) and ρ(e). Assuming probability-sophisticated individuals, we87

can find a unique non-decreasing distortion (i.e., probability weighting) function W to decompose3 v(·) to88

W (P (·)), where P is an additive probability measure on 2S (see Wakker, 2010, for review). We thus argue89

that for a probability-sophisticated individual, misperception is a product of two effects: incorrect belief90

(from ρ to P ) and probability weighting (from P to v). The former is about how a person believes an event’s91

occurrence departs from reality, which can be perfected in a Bayesian manner as experience increases. The92

latter is relevant to how agents behaviorally transform probabilities to decision weights. For example, if in93

a laboratory experiment, the decision-maker behaves as if the event will occur with a 20% probability when94

told explicitly that the occurrence probability is 10%, probability weighting likely plays a role. However,95

in field data, when the decision-maker acts as if the occurrence probability is 20%, while the researcher96

assesses it as 10%, both effects might exist. Note that with incorrect beliefs, providing information about97

the travel time distribution would likely improve decision making, whereas probability weighting would not98

be affected by the provision of information. Despite the difference, the two situations incur extra scheduling99

costs similarly. However, we will focus on probability weighting because commuters should have established100

beliefs approximating objective probabilities, and our empirical data are taken from an SP experiment with101

explicit probabilities.102

2.2. Rank dependence103

The first-order stochastic dominance of two acts must be preserved to ensure the existence of the distortion104

function W . This further implies that rank dependence must be a derived property of W 4. Rank-dependent105

probability weighting has been employed to address the Allais (1953) paradox. Its behavioral interpretation106

is that an individual does not perceive objective probabilities as they are, but rather transforms them into107

decision weights based on the ranked position (relative goodness or badness) of their corresponding outcomes108

(Quiggin, 1982). The shapes of the weighting function, as shown in Figure 2, represent an individual’s risk109

attitude: in the case of worsening ranked outcomes, (i) a convexW reflects pessimism, because the probability110

of a good outcome is always underestimated while that of the bad outcome is overestimated; (ii) a concave111

W reflects optimism because a good outcome is overestimated; (iii) an inverse S-shaped W means that the112

individual focuses too much on the extreme outcomes (e.g., short and long travel times) and is insensitive to113

intermediate outcomes, which implies that the subjective standard deviation is large; and (iv) an S-shaped114

W represents a kind of regression to the perception of a single value for the travel time (possibly unequal to115

3Such a decomposition rules out ambiguity aversion as discussed in Wakker (1990).
4One example that does not satisfy this condition is prospect theory (Kahneman and Tversky, 1979).
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the mean travel time), which in general leads to a lower perceived standard deviation. Next, we introduce116

rank dependence into a general scheduling model.117
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Figure 2: Shapes of the probability weighting function for worsening ranked positions

2.3. General scheduling preferences118

The model builds on the general scheduling preferences as studied by Vickrey (1973) and Tseng and119

Verhoef (2008) and Fosgerau and Engelson (2011). Table A.9 summarizes symbols used in the remainder120

of this section. We consider a daily commuter who needs to travel from home to work. She/he wants to121

maximize the utility of conducting activities at both ends. The in-vehicle time is assumed to be completely122

unproductive, and the marginal utilities of time spent at home and at work relative to travel are denoted123

h(t) and w(t), respectively. h(t) and w(t) vary by the time of day and intersect at a∗. This intersection is124

interpreted as the ideal arrival time because people would be best off arriving at a∗, if travel is instantaneous.125

We present a graphical demonstration in Figure 3.126

Assumption 1. h(t) is non-increasing, w(t) is non-decreasing, h(t) > w(t) for all t < a∗ and h(t) < w(t)127

for all t > a∗.128

Assumption 1 is needed to ensure the existence of an optimal departure time and some properties shown129

afterwards. It is mild because it would otherwise be behaviorally implausible (e.g., there would be no need130

to travel if h is increasing while w is decreasing). The inequalities imply that if h(t) or w(t) is constant, the131

other should be a step function with a jump at t = a∗.132

Assumption 2. The travel time T = µ + σX is stochastic, and its standardized random variable X is133

assumed to be independent of the departure time, has a bounded support [x, x] and a distribution function G.134
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In reality, there are also time-dependent parts of travel time, namely T = µ+µ̃(t)+(σ+σ̃(t))X. Therefore,

this is a relatively strong assumption, stating that the mean travel time and the standard deviation change

sufficiently slowly with regard to departure time, µ̃′(t) ≈ 0 and σ̃′(t) ≈ 0. 5 The boundedness of X ensures

its inverse function, G−1, has a finite value. For any realization of T , the utility derived from an arbitrary

time interval [th, tw] is a function of departure time d, given by

U(d;T ) =

∫ d

th

h(t)dt+

∫ tw

d+T

w(t)dt,

where the first term is utility derived from home and the second term is utility derived from work. Let the135

utility derived from instantaneous travel time, U(a∗; 0), be the reference utility level, and normalizing a∗ = 0136

without loss of generality, we define a cost function as137

C(d;T ) =

∫ 0

d

h(t)dt+

∫ d+T

0

w(t)dt. (1)

such that C(d;T ) ≡ U(0; 0)− U(d;T ).138

2.4. Optimal departure times and the cost of misperception139

Given Assumption 1, it immediately follows that C(d;T ), as a sum of two convex functions, is necessarily140

convex in d for each realization of T . Then, by the fact that the expectation operator and rank-dependent ex-141

pectation (RDE) operator work as a weighted average, it is straightforward that E[C(d;T )] and RDE[C(d;T )]142

are also convex in d. Thus, there exists a unique interior solution d∗ that minimizes the expected travel cost,143

and also d∗w that minimizes the rank-dependent-expected travel cost. For continuous h(t)6, the first-order144

optimality condition for minimizing the expected cost, E[C(d;T )], is145

h(d∗) = E[w(d∗ + T )] =

∫ 1

0

w(d∗ + F−1(s))ds, 7 (2)

where d∗ is the objectively optimal departure time. However, individuals minimize the rank-dependent146

expected utility, RDE[C(d;T )], which leads to a first-order optimality condition expressed as147

h(d∗w) = RDE[w(d∗w + T )] =

∫ 1

0

w(d∗w + F−1[W−1(s)])ds, (3)

where W is a probability weighting function and d∗w is the subjectively optimal (thereby suboptimal) de-148

parture time. Thus, the misperception brings an extra cost of choosing a suboptimal departure time, given149

by150

∆ = E[C(d∗w;T )]− E[C(d∗;T )] ≥ 0. (4)

∆ is necessarily not less than zero, because the traveler can do no better than realize the minimum expected151

cost. Equations (1) to (3) imply that the size of ∆ depends on h(t), w(t), F , and W .152

5It is empirically demonstrated that Assumption 2 remains a good approximation by Fosgerau and Karlström (2010) and
Fosgerau and Fukuda (2012), where actual traffic data are well fitted by a stable distribution G(X).

6w(t) is not required to be continuous because it can be smoothed by the expectation operator and RDE operator.
7dF (T ) is substituted by ds for clarity, and F−1 is thus essentially a quantile function.
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Figure 3: General scheduling preferences

2.5. Comparative statics153

It remains to investigate under what condition(s) a traveler would depart earlier/later than the optimal154

departure time and which situation is more costly. We find that the order of stochastic dominance (Hadar155

and Russell, 1969) helps in answering such questions (all proofs are provided in Appendix B).156

Property 1. For any F (T ) that first-order stochastically dominates W [F (T )] (i.e., F (T ) ≥ W [F (T )] for157

every T ), d∗w ≤ d∗ holds.158

The effects of convex and concave W as in Figure 2 can be explained by this property. It is clear that a159

travel time distribution dominates its pessimistically weighted counterpart (convex W ), and pessimism thus160

indicates earlier-than-optimal departure and optimism (concave W ) conversely indicates later-than-optimal161

departure. In particular, d∗w is equal to d∗ if w(t) is a constant because, in this case, the departure time162

is always the intersection of w(t) and h(t) regardless of an individual’s probability perception. The effects163

of S-shaped and inverse S-shaped W are ambiguous because they do not satisfy Property 1. Nonetheless,164

when w(t) is linearly increasing, performing an integration by parts once more shows that the mean of F (T )165

being larger than the mean of W [F (T )] is sufficient for earlier-than-optimal departure. However, the effects166

become ambiguous again if W is a mean-preserving transformation.167

Property 2. If W is a mean-preserving transformation and w(t) is convex, for any F (T ) that second-order168

stochastically dominates W [F (T )] (i.e.,
∫∞
T
F (s)ds ≥

∫∞
T
W [F (s)]ds for every T ), d∗w ≤ d∗ holds.169

This property provides a way to check the effects of S-shaped and inverse S-shaped weighting functions170

on the departure time. Intuitively, if a probability weighting function preserves the means but fattens the171

tails of given distributions (i.e., increases variance), it is likely for there to be a larger perceived loss if172

w(t) increases more quickly than linearly. A mean-preserving S-shaped W will never cause W [F (T )] to be173

dominated by F (T ), and travelers thus always choose later-than-optimal departure. It remains to investigate174

in which direction subjective optimal departure time shifts are more costly.175
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Property 3. If h(t) and w(t) are twice differentiable and E[w′′(d∗ + T ]) > h′′(d∗), then marginally late176

departure is more costly; otherwise, marginally early departure is more costly.177

This situation occurs if w(t) is strictly convex and h(t) is concave. In such a case, a pessimist will be178

better off than a comparable optimist. As preliminaries of the econometric specification, we demonstrate179

two special cases of the general scheduling model as follows.180

2.6. Special case 1: piece-wise constant marginal utility181

This parameterization is proposed by Small (1982). We refer to it as step model because w(t) is a step182

function; i.e., h(t) = α and w(t) = α− β + (β + γ) · 1{d+ T ≥ 0}, where 1{·} is an indicator function. The183

travel cost then becomes184

C(d;T ) = αT + βmax(−(d+ T ), 0) + γmax(d+ T, 0), (5)

where max(−(d+ T ), 0) is schedule delay early (SDE) and max(d+ T, 0) is schedule delay late (SDL). The185

subjective optimal departure time (see Appendix C.1 for the derivation) is then given by186

d∗w = −µ− σG−1

[
W−1(

γ

β + γ
)

]
. (6)

Substituting this expression into Eq. (5) and applying an expectation operator yields the expected cost for187

a traveler who departs at a subjectively optimal departure time:188

E[C(d∗w;T )] = αµ+ σ

(
[(β + γ)W−1

(
γ

β + γ

)
− γ]G−1

[
W−1

(
γ

β + γ

)]
+ (β + γ)

∫ 1

W−1( γ
β+γ )

G−1(s)ds

)
,

(7)

which is linear in terms of the mean and standard deviation of the travel time. The equation shows that189

the value of the mean travel time (VMTT), α, is the same as in the standard scheduling model, whereas the190

VTTV is not. The cost of misperception is given by191

∆ = σ

(
[(β + γ)W−1

(
γ

β + γ

)
− γ]G−1

[
W−1(

γ

β + γ
)

]
− (β + γ)

∫ W−1( γ
β+γ )

γ
β+γ

G−1(s)ds

)
. (8)

If the traveler has a correct perception (i.e., W−1( γ
β+γ ) = γ

β+γ ), the right-hand side of the above equation192

becomes zero.193

2.7. Special case 2: time-dependent linear marginal utility194

We refer to the second special case as the slope model because the marginal utility of time is specified as195

a linear function of the time of day. Equation (1) can be rewritten as196

C(d;T ) =

∫ 0

d

(β0 + β1t)dt+

∫ d+T

0

(γ0 + γ1t)dt. (9)

Without loss of generality, we normalize the intersection of h(t) and w(t) to be zero; i.e., γ0 = β0. Applying197

the RDE operator and first-order condition (see Appendix C.2) yields198

d∗w = − γ1

γ1 − β1
µw, (10)

8



where µw is the weighted mean travel time and µw =
∫ 1

0
F−1[W−1(s)]ds. The equation implies that the199

subjectively optimal departure time does not depend on travel time variability. The suboptimal travel cost200

due to misperception is201

E[C(d∗w;T )] =
γ2

1

2(γ1 − β1)
µ2
w +

1

2
γ1µ

2 +
1

2
γ1σ

2 + µ

(
γ0 −

γ2
1

γ1 − β1
µw

)
. (11)

The extra expected cost given a shift of d∗w relative to d∗ is symmetric because of the quadratic term in202

Eq. (12), making marginally early and late departures equally costly:203

∆ =
γ2

1

2(γ1 − β1)
(µ− µw)2. (12)

The equation also indicates that, if a traveler has an unbiased perception of the mean travel time, the cost of204

misperception is zero because the traveler coincidentally chooses the same departure time as in the standard205

scheduling model.206

The derivation of the VTTV is not as straightforward as that of the step model, because µw in Eq. (11)207

could be a function of σ. We show their relationship as follows. Because of W , X is perceived as X ′, which208

is subject to a new distribution W [G(X ′)]. Given that X ′ does not necessarily have zero mean and unity209

standard deviation, we normalize it such that X ′ = µ∆ + σ∆Y , where Y is the new normalized random210

variable, µ∆ is the location shift and σ∆ is the change of scale. It immediately follows that the perceived211

travel time Tw = µ+ σX ′ = µ+ σµ∆ + σσ∆Y . This shows that Tw has mean µw = µ+ σµ∆ and standard212

deviation σw = σσ∆. Substituting these variables into Eq. (11) and taking the derivative with respect to µ.213

Although Y is not subject to the distribution G, the VMTT and VTTV remain the same as if Y is subject214

to G, because they are shape irrelevant.215

We provide an example with restricted assumptions such that the effects of the probability weighting216

function are tractable. Given Assumption 2, the travel time has a lower bound µ + σx with x < 0. Let217

W [F (T )] = a + (1 − a)F (T ). Such a probability weighting function essentially puts the mass density a at218

the lower bound of T , and lowers the density elsewhere (extremely optimistic). Straightforwardly, we have219

µw = a(x+µ)+(1−a)µ = µ+σax and ∂µw
∂a = σx < 0. This means that a reduces the perceived mean travel220

time, and travelers thereby depart later than is optimal, which is consistent with Property 1. Furthermore,221

Eq. (12) becomes
γ2

1

2(γ1−β1) (σax)2, indicating that the cost of misperception quadratically increases with a.222

2.8. Valuation223

Supposing that utility is a money metric, VMTTs and VTTVs derived from E[C(d∗w;T )] in the step and224

slope models are summarized in Table 1. We also provide the E[C(d∗;T )] counterparts (see Fosgerau and225

Karlström, 2010; Engelson and Fosgerau, 2011) for comparison. Table 1 shows that VTTVs in both step226

and slope models are affected by probability weighting, whereas VMTTs are not. Put alternatively, the cost227

of misperception rests solely on the cost of travel time variability. This implication is consistent with the228

empirical results of Börjesson et al. (2012), where VMTTs derived from the scheduling model are very close229

to VMTTs estimated from the mean-variance model, whereas VTTVs are very different.230

3. Data231

Data were collected from an Internet-based SP experiment conducted in 2010 in Japan, where the re-232

spondents were asked to put themselves in a day-to-day car-commuting route-choice scenario.233
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Table 1: Derived VMTTs and VTTVs
Step Slope

Measure E[C(d∗;T )] E[C(d∗w;T )] E[C(d∗;T )] E[C(d∗w;T )]

µ α α γ0 − β1γ1

γ1−β1
µ γ0 − β1γ1

γ1−β1
µ

σ (β + γ)
∫ 1

γ
β+γ

G−1(s)ds [(β + γ)W−1( γ
β+γ )− γ]G−1[W−1( γ

β+γ )] - -

+(β + γ)
∫ 1

W−1( γ
β+γ )

G−1(s)ds

σ2 - - γ1

2
γ1

2 +
γ2

1µ
2
∆

2(γ1−β1)

The experiment is constructed as follows. We first generate 1000 random draws X = {x1, ..., x1000} based234

on a stable travel time distribution (see Figure 4 and Appendix E for details) calibrated with electronic toll235

collection data for the Tomei Express, an inter-city toll road connecting Tokyo and its southwest suburbs.236

Subsequently, we specify a 53 fractional factorial SP experimental design, with the attribute levels given in
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Figure 4: Stable distribution of travel time on the Tomei Express

237

Table 2. Design attributes are the mean travel time µ, standard deviation σ, and optimal probability of238

lateness β
β+γ . The random travel time for each choice profile is generated according to T = µ+σX. Following239

Fosgerau and Karlström (2010), we calculate the optimal departure time without probability weighting as240

d∗ = −µ− σ
∫ 1

γ
β+γ

G−1(s)ds for each choice profile and count the frequencies of schedule delay within given241

intervals (e.g., #SDE0−10 = #{Tk : −10 ≤ d∗ + Tk ≤ 0, k = 1, ..., 1000}/10). In this way, travel time242

variability is converted and presented as a histogram-like choice situation, as in Table 3. Each possible243

schedule delay interval corresponds to an occurrence frequency that the respondent is supposed to have244

experienced in the past 100 days. Frequencies instead of probabilities are presented to ensure a respondent245

with no knowledge of probability can understand the given information.246
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One important point of the design needs to be clarified here. Although some scheduling-preference pa-247

rameters (which construct the optimal probability of lateness) are used as design attributes and the departure248

time is decided by the interaction of design attributes rather than predefined levels, each alternative’s depar-249

ture time remains exogenous from the respondent’s point of view. Additionally, the departure time for each250

alternative is claimed to be unchangeable (otherwise it is endogenous to respondents, making schedule de-251

lays presented in Table 3 inconsistent and hence the estimation of scheduling model unavailable). Thus, the252

essence, namely that the respondent is choosing a departure time given schedule constraints and stochastic253

travel times, still holds. This could also be viewed as a Bayesian approach where we first propose some prior254

belief of estimate values (i.e., β, γ), and the observations of the respondent’s choice are used to update the255

posterior distribution.256

Table 2: Attribute level setting in our SP experiment

Attributes Level 1 Level 2 Level 3 Level 4 Level 5
Mean (min) 48 54 60 66 72
Standard Deviation (min) 8 10 12 14 16

Optimal probability of lateness ( β
β+γ ) 0.3 0.2 0.4 0.1 0.5

Table 3: Sample choice situation in our SP experiment

Route Mean time in
Frequency of arriving early and late in past 100 days

20+ 10-20 0-10 0-10 10-20 20-30 30-40 40+

past 100 days early early early late late late late late
A 60 min 0 1 72 21 4 1 1 0
B 72 min 0 3 77 14 3 1 1 0

However, ambiguity inevitably exists in this experiment. Outcomes are not specific values but only known257

to be bounded within intervals of probability. Identification would be a problem if we do not impose further258

assumptions. Thus, the travel time perceived by individuals is assumed to be distributed uniformly within259

these intervals, such that the average of the lower and upper bounds of a given interval can be regarded as a260

mass representing a specific outcome8. The travel time distribution is thus discretized. Despite a relatively261

strong distributional assumption, the discretization still makes sense because people may use histogram-262

shaped approximations rather than perfectly forming a travel time distribution in their mind (Tseng et al.,263

2009).264

All the respondents are daily car commuters. After discarding samples with (i) missing data and (ii)265

answer times shorter than 20 min or longer than 45 min, we have 4176 observations remaining, provided by266

232 respondents each of whom faced 18 choice scenarios. Descriptive statistics are summarized in Table 4.267

825 min early and 45 min late were chosen arbitrarily to represent schedule delays beyond 20 min early and 40 min late
because of the infinite upper bound. This arbitrary choice is not expected to affect the result greatly given the low frequencies
of these extreme outcomes.
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Table 4: Descriptive statistics

Min Median Mean Max
Age 20.00 45.00 43.44 60.00
Female dummy 0.00 0.00 0.39 1.00
Annual income (104 JPY) 50.00 600.00 587.10 1200.00
House ownership dummy 0.00 1.00 0.68 1.00
Household size dummy 1.00 3.00 2.90 8.00
Inflexible workday dummy 0.00 1.00 0.70 1.00
Commuting time (min) 1.00 20.00 26.08 110.00

4. Empirical specification268

Given the dichotomous-choice data, we specify two discrete-choice models for the aforementioned special269

cases. The systematic utility functions9 are given by270

V =

{
Step :

∑n
i=1 πi(αTi + βSDEi + γSDLi)

Slope :
∑n
i=1 πi[(γ0 − β0)d+ γ0Ti + (γ1 − β1)d2/2 + γ1(T 2

i /2 + Tid)]
(13)

where {(Ti, pi)}ni=1 denotes n paired possible travel times with corresponding probabilities from a choice,271

such that Ti > Ti−1 (i.e., travel times are ranked from low to high), and πi = W (pi + pi−1 + · · · + p1) −272

W (pi−1 + pi−2 + · · ·+ p1) is the decision weight put on each Ti. It is worth noting that Ti > Ti−1 does not273

necessarily imply Ti ≺ Ti−1, and the implicit assumption here is thus that travelers always prefer less travel274

time; i.e., β < α in the step model and γ1 > β1 in the slope model. Behaviorally, it means that travelers275

prefer to terminate the trip when they arrive before the preferred arrival time, rather than continuing to276

detour. This assumption is supported by the vast majority of empirical estimates. Two popular probability277

weighting functions (Tversky–Kahneman (T-K) and Prelec functions) are tested:278

W [p] =

 T-K : pθ

(pθ+(1−p)θ)
1
θ

Prelec : exp(−η(− ln p)θ)
(14)

The criterion for selecting a probability weighting function is whether it is flexible enough to reflect the279

aforementioned four types of curves. The Prelec (1998) weighting function meets this criterion because280

curvature (discriminality) is controlled by θ and elevation (attractiveness) is controlled by η. We use the281

T-K weighting function in a comparison, although it does not satisfy our criterion. The random utility for282

alternative j 10 is283

Uj = Vj(·) + εj . (15)

The alternative-specific constant is not included because alternatives are unlabeled. Furthermore, we assume284

the error term εj is an independent and identical Gumbel distribution, so that a binary logit (BL) choice285

model applies. This model is estimated with a maximum log-likelihood estimator using Pythonbiogeme 2.2286

(Bierlaire and Fetiarison, 2009). The bias of misspecification in the expected utility (EU)-based model and287

rank-dependent expected utility (RDEU)-based model can be detected readily by comparison.288

9Note that β0 and γ0 are equalized to rule out the intercept terms, and thus clearly present the derived VTTV. However,
this is not a good idea when we estimate the empirical model because it will constrain the crossing of h and w to be zero.

10Note that we economize the use of subscript j for what is supposed to be Vj , Tij , and πij in Eq. (13).
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5. Estimation results289

5.1. Piece-wise constant marginal utility (Step model)290

As a benchmark, we first estimate a scheduling model without probability weighting, namely πi = pi in291

Eq. (13). According to the estimation results of the step model presented in Table 5, SDE affects the utility292

level weakly, as the SDE ratio is not notably different from zero. This implies that people are willing to293

arrive a lot earlier to save a negligible amount of travel time; i.e., they are very flexible on their workdays.294

This result contradicts the data, which shows 70% of subjects have inflexible workdays. Additionally, the295

SDL ratio is as high as 11.3. Although the model fit is not poor, such a high SDL ratio is somehow counter-296

intuitive and has not been reported in any study to date. These findings cast doubt on the validity of297

assuming that an individual is calculating objectively expected values when the experiment design is risk298

related. Given this, the scheduling model with probability weighting becomes a natural alternative. The299

model with a Prelec weighting function outperforms the others in terms of goodness of fit, whereas the T-K300

model is not as good, and the Akaike information criterion (AIC) implies an over-fitting issue. The SDE301

and SDL ratios in the Prelec model are 0.92 and 6.0, respectively. These numbers are reasonable, and we302

are not surprised that the SDL ratio is relatively high because we did not consider a lateness penalty.303

Moreover, the two models have totally different patterns of probability weighting. θ in the T-K model304

is not notably different from 1, meaning that we cannot reject the null hypothesis that people are perfectly305

following EUT. If so, there is no need to consider probability weighting. A possible explanation is that T-K306

function only has one parameter, which keeps it from well fitting the true probability weighting curve. In307

this case, the Prelec model is more reliable, given its flexibility. The Prelec model has a skewed S-shape308

weighting function that is convex within [0, 0.92] and concave subsequently. In particular, probabilities lower309

than 0.45 are under-weighted as zero. This essentially indicates that people are very pessimistic and tend310

to choose an earlier departure time than they really need to. However, they also tend to undervalue the311

possibility of extremely bad outcomes, meaning that one who requires a very low risk of being late (less than312

8%) tends to choose a departure time that makes him/her bear a slightly higher risk. It also indicates that313

travelers focus more on intermediate outcomes than on extremely good or bad outcomes. A possible reason314

for this is the effect of loss aversion; i.e., the intermediate outcomes are what delineate the boundaries of315

arriving early and late, and people care more about lateness. Nonetheless, we argue that the utility function316

has captured the effect of loss aversion by γ, and the probability weighting curve should thus be robust.

Table 5: Step model

Standard T-K Prelec
Parameter Value t-stats Value t-stats Value t-stats

Mean time (α) -0.0982 -22.47 -0.0985 -22.53 -0.101 -22.46
Schedule delay early (β) -0.0178 -1.23 -0.027 -1.65 -0.0922 -3.41
Schedule delay late (γ) -1.11 -24.04 -1.158 -20.22 -0.607 -18.89
Theta (θ) [t-stats against 1] 1.03 1.05 1.98 5.7
Eta (η) [t-stats against 1] 10.5 3.43
No. of observation 4176 4176 4176
Final log-likelihood -1915.857 -1915.18 -1907.522
Likelihood ratio (ρ̄2) 0.337 0.337 0.339
Akaike information criterion (AIC) 3837.71 3838.36 3825.04
SDE ratio 0.18 0.27 0.92
SDL ratio 11.3 11.76 6.0

317
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5.2. Time-dependent marginal utility (Slope model)318

Table 6 shows that the Prelec model again outperforms the standard and T-K models with respect to the319

goodness of fit for the slope-type specification, and this superiority is greater than that for the step model.320

The ideal arrival times (intersection of h and w) obtained as β0−γ0

γ1−β1
from these three models are negative and321

range from -9 to -31. This meets the setting in the slope model that the ideal arrival time should be earlier322

than the preferred arrival time, given non-zero T . In all models, we find that the marginal utility at home323

h(t) decreases much more slowly than the marginal utility at work w(t) increases. This implies that travelers324

prefer to depart earlier rather than arrive later to compensate for a change in travel time, which could be325

due to the tight workday of the population11. Put alternatively, as h(t) becomes flatter, the preferred arrival326

time approaches the ideal arrival time, and travelers assign a larger increment of the travel time to their327

head start.328

The estimated Prelec weighting curve (see Figure 5) has a pattern similar to that of its counterpart in329

the step model, reflecting a pessimistic attitude of almost the same magnitude. The decision weights put330

on extremely bad outcomes are not very different from being linear, meaning that travelers can perceive331

probabilities of these outcomes fairly well. The T-K weighting function has a completely convex curve, also332

indicating pessimism. These two estimated weighting functions are not mean-preserving transformations333

unless the travel time distribution has a very fat tail. We thus argue that they will result in an earlier-334

than-optimal departure. Because loss aversion is not controlled in the slope model, it is possible that the335

weighting parameters are contaminated. We rule out such a possibility by estimating a slope model with a336

kink in its w(t) to accommodate the loss of late arrival (see Appendix D). No notable difference is found in337

the probability weighting curve.338

In contrast to some literature, we find the step model generally has a better fit than the slope model.339

Possible reasons are that our sample contains a high fraction of people who have inflexible workdays. In such340

a case, we are not surprised that the step model (in which the preferred arrival time is fixed and the jump341

of w reflects the official work start time better than a continuous transition) has better descriptive power.342

Table 6: Slope model

Standard T-K Prelec
Parameter Value t-stats Value t-stats Value t-stats

γ0 − β0 -0.52 -13.1 -0.496 -12.17 -0.308 -6.85
γ0 -0.542 -27.6 -0.413 -15.57 -0.357 -26.52
γ1 − β1 -0.0324 -18.06 -0.0158 -3.18 -0.033 -11.3
γ1 -0.0313 -16.3 -0.0129 -2.43 -0.0321 -9.84
θ [t-stats against 1] 2.71 5.52 2.29 11.94
η [t-stats against 1] 15.7 6.05
No. of observations 4176 4176 4176
Final log-likelihood -1957.869 -1944.492 -1914.151
Likelihood ratio (ρ̄2) 0.322 0.327 0.337
Akaike information criterion (AIC) 3923.74 3898.98 3840.30

5.3. Type i and type ii errors343

Because monetary cost is not included in our SP experiment, the magnitude of travel cost is measured344

as the equivalent mean travel time. Assuming the scheduling preferences estimated from both models with345

11We try segmenting the population by flexibility of workday and find a steeper w(t) for those who have inflexible workdays.
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Figure 5: Objective probability (ranked travel time) versus decision weight, step model on the left and slope model on the right

the Prelec weighting function are the true preferences associated with their certainty equivalents, we can346

decompose the mixture of type i and type ii errors into two terms: (i) the difference between reliability ratios347

(RRs) calculated from estimates using models with and without probability weighting functions and (ii) the348

difference between RRs derived with and without probability weighting, using the estimates from the same349

model. Because VMTTs were previously shown to be irrelevant to probability weighting in both models,350

they will serve as the baseline; thus, RRs here actually reflect the levels of expected costs.351

Although all estimates are supposed to be asymptotically normally distributed in our econometric setting,352

the distribution of the RR is unknown because it is converted from the formula given in Table 1. We353

thus calculate the confidence intervals (CIs) of the RR and the two types of errors by multivariate normal354

simulation (Armstrong et al., 2001). We generate 3000 multivariate normal random draws that are subject to355

the estimated variance–covariance matrix, and convert them to the RR. Subsequently, we use the Wilcoxon356

rank-sum test to see if the two types of errors are of statistical significance.357

Let Θ denote the set of parameter estimates. In Table 7, column EU(d∗; ΘEU ) contains RRs derived358

from EU-based estimates without considering the misperception cost, EU(d∗; ΘRDEU ) contains RRs derived359

from RDEU-based estimates without considering the misperception cost, and EU(d∗w; ΘRDEU ) contains RRs360

derived from RDEU-based estimates considering the misperception cost. Type i and type ii errors are then361

given by δ1 = EU(d∗;ΘRDEU )−EU(d∗;ΘRDEU )
EU(d∗;ΘRDEU ) and δ2 =

EU(d∗w;ΘRDEU )−EU(d∗;ΘRDEU )
EU(d∗w;ΘRDEU ) respectively. The statistical362

test shows that both types of errors are significant; i.e., not random variation.363

The type i error is considerable, being -23.8% in the step model and 7.95% in the slope model. It is364

still an open question how travel time variability should be incorporated into SP design, because estimated365

values of reliability are strongly affected by the design(see the discussion in Carrion and Levinson, 2012b).366

Probabilities have often been involved in surveys, explicitly or implicitly, in past studies. Our findings suggest367

that it is necessary to consider the individual’s non-linear probability weighting when modeling this kind of368

data; otherwise, estimates can be relatively biased.369

By contrast, the effect of ignoring the cost of probability misperception in deriving the reduced form (i.e.,370

type ii error) is as low as -0.9% in the step model, provided weighting parameters are estimated correctly in371

our empirical application. This is good news because it suggests that we can continue to take advantage of372
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the analytical convenience of linearity without losing much accuracy. However, the error is 7.58% in the slope373

model and may be non-trivial. This result is not surprising because the marginal utility of time changes over374

the time of day in the slope model, making a unit deviation from the optimal departure time more costly.375

The conclusion depends largely on whether time-varying marginal utility is the case in reality.376

The use of multivariate normal simulation has, to some extent, accounted for the unobserved heterogeneity377

in scheduling preferences, provided that it is asymptotically normal distributed. However, if this is not the378

case, then the results herein might not be robust enough. It is still possible that the cost of misperception is379

large for some individuals, even though the population-averaged probability weighting function implies the380

opposite.381

Table 7: Type i and type ii errors

Valuation EU(d∗; ΘEU ) EU(d∗; ΘRDEU ) EU(d∗w; ΘRDEU ) δ1 z-stats δ2 z-stats
σ/µ 1.79 2.39 2.42 -23.8% -39.09 -0.9% -2.76
95% CI [0, 2.79] [1.77, 2.96] [ 1.77, 3.02] [-100%, -30%] [-2.37%, 0.1%]
σ2/µ 0.173 0.162 0.176 7.95% 25.26 -7.58% -24.42
95% CI [0.150, 0.197] [0.129, 0.202] [0.138, 0.220] [-17.8%, 39.6%] [-9.59%, -5.85%]

5.4. Effects of unobserved heterogeneity382

To control the unobserved heterogeneity, we estimate panel latent class logit models for both step and383

slope specifications. The existence of a large amount of heterogeneity is confirmed by a significant improve-384

ment in the model fit compared with the case for the BL model. Again, the slope specification is not so385

good as step specification in terms of the model fit regardless of the number of classes. The reason might be,386

the same as it was previously, that the sample contains a large portion of workers with inflexible workdays.387

Therefore, we only present the result for the step model hereinafter, taking it as the correct specification.388

Although the Bayesian information criterion suggests the optimal number of classes to be four, we find389

that signs of the parameters become increasingly inconsistent with theory as the number of classes increases.390

For example, the marginal utility of SDE, β, turns out to be positive in some classes. A positive β implies a391

negative value of the optimal probability of being late, which is obviously not plausible, making the derived392

VTTV unavailable. On the basis of extensive tests on alternative specifications and taking the interpretation393

of coefficients into consideration, we select a model with two latent classes as our final model.394

The estimation result is presented in Table 8. All coefficients are class-specific except β, which is re-395

stricted to zero in class 2 to avoid an otherwise positive estimate. It is worth noting that class 2 accounts396

for approximately 53.9% of the population, which implies that about half of respondents take SDE as an397

indication of a good travel condition. A possible explanation is that such people derive mental comfort or398

other sorts of utility by arriving early. We also note that β in class 2 is not significantly (t-stat 1.44) different399

from zero if not being restricted to zero, which entails another explanation; i.e., as detailed representation400

of SDEs and SDLs might be burdensome to some people, they adopt simplified decision-making strategies,401

such as only focusing on the mean travel time and SDL. If so, the estimates of class 2 do not represent the402

true preferences, and people in class 2 might therefore derive disutility from SDE in reality. The difference403

in SDLs between class 1 and class 2 (3.75 versus 11.2) indicates that class 1 might have a higher value of404

time or fewer schedule constraints.405

Addressing the weighting parameters, we find that η of class 2 is relatively large, implying a strong406

probability of the under-weighting behavior for both short and long travel times. This means that people407

in class 2 tend to perceive a single value for the travel time distribution, and care much about whether this408
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perceived value will result in him/her arriving on time. However, given that β = 0, the derived VTTV409

of class 2 is zero. By contrast, class 1 has weaker probability under-weighting behavior, as its weighting410

parameters are closer to 1 and not significant. This does not necessarily mean people almost perfectly411

perceive probability, but might be a signal of unobserved heterogeneity (otherwise η would have been close412

to 1). Overall, in agreement with the results for the BL model, these weighting parameters reveal that all413

classes have a pessimistic attitude to some extent.414

Because β is ether restricted to zero or insignificantly different from zero, we can only calculate the415

reliability ratio for class 1. We find that, for class 1, RR is 7.7% higher when the cost of misperception is416

incorporated. Even when this ratio is reduced with the inclusion of class 2 (with RR equal to zero), it is still417

notably higher (3.55%) than that for the BL model. Given that the latent class model is preferable in terms418

of the model fit, it is reasonable to conclude that there is a considerable cost due to misperception for some419

people.

Table 8: Panel latent class step model

Class 1 Class 2
Parameter Value t-stats Value t-stats

Mean time (α) -0.141 -9.56 -0.092 -7.32
Schedule delay early (β) -0.088 -2.11 0 -
Schedule delay late (γ) -0.529 -3.17 -1.03 -6.42
Theta (θ) [t-stats against 1] 1.01 0.07 2.19 5.92
Eta (η) [t-stats against 1] 2.0 0.83 11.0 3.35
Sample fraction 0.461 4.95 0.539 -
SDE ratio 0.62 0
SDL ratio 3.75 11.2
RR (no misperception) 1.55 0
RR 1.67 0
No. of Observations 4176
Final log-likelihood -1745.651
Likelihood ratio (ρ̄2) 0.393
Bayesian information criterion (BIC) 3574.673

420

5.5. Comparison with the existing literature421

It is interesting to compare our estimation result with that of Wang et al. (2012) because the two studies422

use similar model specifications. Before we do so, several distinctions should be clarified. Firstly, the data423

used in the cited study have a limited variation of probability (i.e., p = {0.025, 0.05, 0.1, 0.2}), which is not424

the case in our study. Secondly, the cited study has a control variable for the shape of G in the utility425

function, which is not necessary in our case because G is the same in all scenarios. Thirdly, the survey426

in the cited study was for two separate experiments: one estimating the scheduling model and the other427

estimating the reduced-form model. That approach was superior to that of our study because it allows a428

direct comparison to be made between the VTTV derived from the scheduling model and the VTTV derived429

from the reduced-form model using the same sample. Fourthly, the cited study focused on the estimate430

values of reduced-form model (i.e., RDE[C(d∗w;T )]) while our study focuses on the expected travel cost with431

a suboptimal departure time (i.e., E[C(d∗w;T )]).432

Despite their differences, both studies confirmed that, when the optimal probability of arriving at time433

β
β+γ is high, travelers tend to be optimistic and choose a departure time later than optimal. However, the434

comparison for the low β
β+γ case is unavailable owing to the lack of variation of probability in the cited study.435
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Another common finding is that, even when the probability weighting is considered, the aforementioned436

difference between the derived VTTV and estimated VTTV from the reduced-form model is not eliminated.437

6. Concluding remarks438

In this paper, we first cast doubt on valuing travel time variability on the basis of WTPs converted from439

scheduling preferences, because it might be subject to error if travelers misperceive the travel time distribu-440

tion to some degree. We argued that the effects of such violations are two-fold: the estimated scheduling441

preferences may be biased and the generalized travel cost may be underestimated. We reformulated a general442

scheduling model under rank-dependent utility to address part of the perceptual errors and analyzed the443

models properties. It was found that the shape of the weighting function and the way the marginal utility of444

time changes determine how the traveler’s suboptimal departure time deviates from the optimal departure445

time, which allows us to determine the cost of misperception.446

With the data collected in a stated-preference experiment, we then estimated two special cases of the447

proposed model. The estimation results indicated that (i) travelers are mostly pessimistic, (ii) the scheduling448

preference estimates are biased (around 20%) without considering probability weighting in a risky choice449

situation, and (iii) the cost of probability misperception may be as little as 1% or as large as 8%, depending450

on how the marginal utility of time varies by the time of day and the unobserved heterogeneity.451

From a practitioner’s point of view, if data are obtained from SP experiments involving probabilities, it is452

a good idea to use a non-EU scheduling model (with a flexible probability weighting function) to estimate the453

data. This would, to some extent, avoid the bias from misspecification (i.e., mistakenly taking the expected454

value as a certainty equivalent). On the other hand, it remains a good approach for future practice to455

estimate a scheduling model based on SP experiments without presenting probabilities and to calibrate the456

derived VTTVs by applying the formulas in Table 1 (and by using weighting parameters from the literature).457

Moreover, it would be good to have individual-level estimates of weighting parameters given that using the458

population-average estimates might undervalue the aggregate cost of misperception.459

On the other hand, the probability misperception, though it exists, is not likely the cause of a discrepancy460

between the estimated VTTV and derived VTTV as large as that found in Börjesson et al. (2012). However,461

additional empirical studies are needed to confirm our argument and to investigate the effects of other sources462

of misperception in future work.463
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Armstrong, P., Garrido, R., Ortúzar, J. d. D., 2001. Confidence intervals to bound the value of time.473

Transportation Research Part E: Logistics and Transportation Review 37 (2), 143–161.474

Bates, J., Polak, J., Jones, P., Cook, A., Apr. 2001. The valuation of reliability for personal travel. Trans-475

portation Research Part E: Logistics and Transportation Review 37 (23), 191–229.476

Becker, G. S., 1965. A theory of the allocation of time. The Economic Journal 75 (299), 493517.477

Bierlaire, M., Fetiarison, M., 2009. Estimation of discrete choice models: extending biogeme. In: Swiss478

Transport Research Conference (STRC).479

Börjesson, M., Eliasson, J., Franklin, J. P., Aug. 2012. Valuations of travel time variability in scheduling480

versus meanvariance models. Transportation Research Part B: Methodological 46 (7), 855–873.481

Brownstone, D., Small, K. A., May 2005. Valuing time and reliability: assessing the evidence from road482

pricing demonstrations. Transportation Research Part A: Policy and Practice 39 (4), 279–293.483

Carrion, C., Levinson, D., 2012a. Uncovering the influence of commuters’ perception on the reliability ratio.484

Tech. rep.485

Carrion, C., Levinson, D., 2012b. Value of travel time reliability: A review of current evidence. Transportation486

research part A: policy and practice 46 (4), 720–741.487

De Palma, A., Ben-Akiva, M., Brownstone, D., Holt, C., Magnac, T., McFadden, D., Moffatt, P., Picard,488

N., Train, K., Wakker, P., Walker, J., Jul. 2008. Risk, uncertainty and discrete choice models. Marketing489

Letters 19 (3-4), 269–285.490

DeSerpa, A. C., 1971. A theory of the economics of time. The Economic Journal 81 (324), 828–846.491

Engelson, L., Fosgerau, M., Dec. 2011. Additive measures of travel time variability. Transportation Research492

Part B: Methodological 45 (10), 1560–1571.493

Fosgerau, M., Engelson, L., Jan. 2011. The value of travel time variance. Transportation Research Part B:494

Methodological 45 (1), 1–8.495

Fosgerau, M., Fukuda, D., Oct. 2012. Valuing travel time variability: Characteristics of the travel time496

distribution on an urban road. Transportation Research Part C: Emerging Technologies 24, 83–101.497

Fosgerau, M., Karlström, A., Jan. 2010. The value of reliability. Transportation Research Part B: Method-498

ological 44 (1), 38–49.499

Hadar, J., Russell, W. R., 1969. Rules for ordering uncertain prospects. The American Economic Review500

59 (1), 25–34.501

Hensher, D. A., Li, Z., May 2012. Valuing travel time variability within a rank-dependent utility framework502

and an investigation of unobserved taste heterogeneity. Journal of Transport Economics and Policy (JTEP)503

46 (2), 293–312.504

Kahneman, D., Tversky, A., 1979. Prospect theory: An analysis of decision under risk. Econometrica:505

Journal of the Econometric Society, 263–291.506

19



Koster, P., Verhoef, E. T., 2012. A rank-dependent scheduling model. Journal of Transport Economics and507

Policy 46 (1), 123–138.508

Nolan, J. P., 1997. Numerical calculation of stable densities and distribution functions. Communications in509

statistics. Stochastic models 13 (4), 759–774.510

Noland, R. B., Small, K. A., 1995. Travel-time uncertainty, departure time choice, and the cost of the511

morning commute. Transportation Research Record, 150–158.512

Peer, S., Knockaert, J., Koster, P., Verhoef, E., 2013. Overreporting vs. overreacting: Commuters’ percep-513

tions of travel times. Tech. rep., Tinbergen Institute Discussion Paper.514

Quiggin, J., Dec. 1982. A theory of anticipated utility. Journal of Economic Behavior & Organization 3 (4),515

323–343.516

Schmeidler, D., 1989. Subjective probability and expected utility without additivity. Econometrica: Journal517

of the Econometric Society, 571–587.518

Small, K. A., 1982. The scheduling of consumer activities: work trips. The American Economic Review519

72 (3), 467479.520

Small, K. A., Winston, C., Yan, J., 2005. Uncovering the distribution of motorists’ preferences for travel521

time and reliability. Econometrica 73 (4), 13671382.522

Tseng, Y.-Y., Verhoef, E., de Jong, G., Kouwenhoven, M., van der Hoorn, T., 2009. A pilot study into the523

perception of unreliability of travel times using in-depth interviews. Journal of Choice Modelling 2 (1),524

8–28.525

Tseng, Y.-Y., Verhoef, E. T., Aug. 2008. Value of time by time of day: A stated-preference study. Trans-526

portation Research Part B: Methodological 42 (78), 607–618.527

Vickrey, W. S., May 1969. Congestion theory and transport investment. The American Economic Review528

59 (2), 251–260.529

Vickrey, W. S., 1973. Pricing, metering, and efficiently using urban transportation facilities. Highway Re-530

search Record (476).531

Wakker, P., 1990. Under stochastic dominance choquet-expected utility and anticipated utility are identical.532

Theory and Decision 29 (2), 119–132.533

Wakker, P. P., 2010. Prospect theory: For risk and ambiguity. Cambridge University Press Cambridge.534

Wang, Q., Sundberg, M., Karlström, A., 2012. Scheduling choices under rank dependent utility maximization.535

No. No 2013:16 in CTS - Working papers in Transport Economics.536

Xu, X., Chen, A., Cheng, L., May 2013. Assessing the effects of stochastic perception error under travel time537

variability. Transportation 40 (3), 525–548.538

Zolotarev, V. M., 1986. One-dimensional stable distributions. Vol. 65. American Mathematical Soc.539

20



Appendix A. List of notations540

Table A.9: List of notations

Variable Definition

T Random travel time, T = µ+ σX with mean µ, std. σ and stan-
dardized random variable X

d Departure time from home
h Marginal utility of time spent at home
w Marginal utility of time spent at workplace
a∗ Ideal arrival time, the intersection of h and w
W Probability weighting function
F Cumulative distribution function of T
f Density function of T
G Cumulative distribution function of X
π Decision weight
E Expectation operator
RDE Rank-dependent expectation operator
∆ Cost of misperception

Appendix B. Proofs of properties541

Appendix B.1. Property 1542

Proof. Because h(t) is non-increasing, d∗w ≤ d∗ ⇔ h(d∗w) ≥ h(d∗) ⇔ RDE[w(d + T )] ≥ E[w(d + T )] for any543

d. We show RDE[w(d+ T )] ≥ E[w(d+ T )] for any d as follows.544

RDE[w(d+ T )]− E[w(d+ T )] =

∫ T=∞

T=0

w(d+ T ) [dW [F (T )]− dF (T )] (B.1)

Using integration by parts, the right-hand side of Equation (B.1) becomes545

w(d+ T ) [W [F (T )]− F (T )] |∞0 −
∫ ∞

0

w′(d+ T )[W [F (T )]− F (T )]dT (B.2)

Because W [F (0)]−F (0) = 0 and W [F (T )]−F (T ) = 0 for large T , the first term is zero. By w′(d+T ) ≥ 0 and546

F (T )−W [F (T )] ≥ 0 for any realization of T , the second term is nonnegative. Consequently RDE[w(d+T )] ≥547

E[w(d+ T )] for any d and thereby d∗w ≤ d∗.548

Appendix B.2. Property 2549

Proof. Equation (B.2) can be rewritten as550

−
∫ T=∞

T=0

w′(d+ T )d(

∫ T

0

[W [F (s)]− F (s)] ds) (B.3)

Applying integration by parts again, Equation (B.3) becomes551

− w′(d+ T )

∫ T

0

[W [F (s)]− F (s)] ds|∞0 +

∫ ∞
0

(
w′′(d+ T )

∫ T

0

[W [F (s)]− F (s)]ds

)
dT (B.4)

21



By
∫ 0

0
[(W [F (s)] − F (s)]ds = 0, the first term becomes −w′(t +∞)

∫∞
0

[(W [F (s)] − F (s)]ds, which is non-552

negative because w′(·) ≥ 0 and
∫∞

0
[(W [F (s)] − F (s)] ≤ 0 by the definition of second-order stochastic553

dominance. For the second term of Equation (B.4), because w′′(d + T ) ≥ 0 and
∫ T

0
[W [F (s)] − F (s)]ds =554

−
∫∞
T

[W [F (s)]− F (s)]ds ≥ 0, it is also nonnegative. Therefore Equation (B.4) is nonnegative and d∗w ≤ d∗555

immediately follows.556

Appendix B.3. Property 3557

Proof. If ∂2E[C(d;T )]
∂d2 is a constant, then the cost is symmetric about d∗. Therefore, making a marginally558

late departure more costly than a marginally early departure will suffice to let ∂2E[C(d;T )]
∂d2 be an increasing559

function, at least in the neighborhood of d∗. This is implied by ∂3E[C(d;T )]
∂d3 |d=d∗ = E[w′′(d∗+ T )]− h′′(d∗) >560

0.561

Appendix C. Derivation of models562

Appendix C.1. Derivation of RDEU-step model563

The rank-dependent expected cost is given by564

RDE[C(d;T )] = αµw + β

∫ −d
0

−(d+ T )
∂W (F )

∂F
f(T )dT + γ

∫ ∞
−d

(d+ T )
∂W (F )

∂F
f(T )dT (C.1)

where µw =
∫ 1

0
F−1[W−1(s)]ds. The first-order condition is565

∂RDE[C(d;T )]

∂d
= γ − (β + γ)W [F (−d)] = 0 (C.2)

Solving it yields the subjectively optimal departure time566

d∗w = −F [W−1(
γ

β + γ
)] = −µ− σG−1[W−1(

γ

β + γ
)] (C.3)

Substituting d∗w back into C(d;T ) and applying an expectation operator over T , we have567

E[C(d∗w;T )] = αµ+ β

∫ F−1[W−1( γ
β+γ )]

0

(F−1[W−1(
γ

β + γ
)]− T )f(T )dT

+ γ

∫ ∞
F−1[W−1( γ

β+γ )]

(T − (F−1[W−1(
γ

β + γ
)])f(T )dT

= (α− β)µ+ [βW−1(
γ

β + γ
)− γ + γW−1(

γ

β + γ
))]F−1[W−1(

γ

β + γ
)]

+ (β + γ)

∫ ∞
F−1[W−1( γ

β+γ )]

Tf(T )dT

= αµ+ σ

(
[(β + γ)W−1(

γ

β + γ
)− γ]G−1[W−1(

γ

β + γ
)] + (β + γ)

∫ 1

W−1( γ
β+γ )

G−1(s)ds

)
(C.4)

Appendix C.2. Derivation of RDEU-slope model568

The rank-dependent expected cost is given by569

RDE[C(d;T )] = γ0µw + (γ1 − β1)d2/2 +
γ1

2

∫ ∞
0

T 2 ∂W (F )

∂F
f(T )dT + γ1dµw (C.5)
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The first-order condition is570

∂RDE[C(d;T )]

∂d
= −β1d+ γ1(d+ µw) = 0 (C.6)

Solving it yields the subjectively optimal departure time571

d∗w = − γ1µw
γ1 − β1

(C.7)

Substituting d∗w back into C(d;T ) and applying an expectation operator over T , we have572

E[C(d∗w;T )] =
γ2

1µ
2
w

2(γ1 − β1)
+

1

2
γ1µ

2 +
1

2
γ1σ

2 + µ(γ0 −
γ2

1µw
γ1 − β1

) (C.8)

Appendix D. Estimation result of RDEU-slope model with a kink573

We construct a RDEU-slope model with a kink by allowing a constant increment on the slope of w(t)574

when arrival time d+ T > d+ µw via a new parameter γ2. Its cost function is given by575

C(d;T ) =

∫ 0

d

(β0 + β1t)dt+

∫ d+T

0

(γ0 + γ1t)dt+

∫ d+T

0

γ2 max(0, t− d− µw)dt (D.1)

Table D.10 presents the estimation results of such a model. The statistical significance of γ2 confirms the576

existence of the loss aversion, which is also why this model performs best among those we tested. However, the577

estimated probability weighting curve (Prelec2) shown in Figure D.6 is S-shaped, indicating that accounting578

for loss aversion does not fail the conclusion we have drawn on the pessimistic attitude in scheduling behavior.579

Table D.10: Parameter estimates of RDEU-slope-kink model

Parameter Value Robust std. t-stats p-value
γ0 − β0 -0.422 0.0403 -10.47 0.00
γ0 -0.457 0.0162 -28.16 0.00
γ1 − β1 -0.024 0.0019 -13.02 0.00
γ1 -0.023 0.0020 -11.17 0.00
γ2 -0.475 0.0624 -7.61 0.00
η [t-stats against 1] 5.22 1.81 2.33 0.00
θ [t-stats against 1] 1.85 0.226 3.76 0.00
No. of Observations 4176
Final log-likelihood -1891.815
Likelihood ratio (ρ̄2) 0.344
Akaike information criterion (AIC) 3797.63

580

Appendix E. Estimation of stable distribution for standardized travel times581

The electronic toll collection (ETC) data for estimating the distribution of standardized travel times were582

provided by Central Nippon Expressway Company for a single section of the Tomei Expressway (Atsugi IC583

to Yokohama-Machida IC, inbound) with a length of 15.3 km. The ETC system recorded the entry time584

and the exit time of each toll road user. We used data from weekdays between 6 a.m. and 10 p.m. during585

the period July to September 2008. The sample size (i.e., the number of vehicles) was 231769.586
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Figure D.6: Probability weighting curve from slope-kink model

First, travel time was transformed into a standardized form using the corresponding mean and standard587

deviation. Then, we fit the data with a stable distribution (e.g. Zolotarev, 1986) using a maximum likelihood588

method (see Nolan, 1997). Four parameters were obtained to describe a stable distribution: a stability589

parameter = 1.250, a skewness parameter = 0.786, a scale parameter = 0.293, and a location parameter =590

0.318. Discussions on the properties of these parameters can be found in Fosgerau and Fukuda (2012). The591

corresponding distribution is illustrated in Figure 4.592
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